首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   362篇
  免费   57篇
  2020年   5篇
  2019年   3篇
  2018年   6篇
  2017年   5篇
  2016年   9篇
  2015年   19篇
  2014年   14篇
  2013年   23篇
  2012年   24篇
  2011年   18篇
  2010年   17篇
  2009年   15篇
  2008年   17篇
  2007年   12篇
  2006年   16篇
  2005年   15篇
  2004年   10篇
  2003年   13篇
  2002年   13篇
  2001年   12篇
  2000年   16篇
  1999年   18篇
  1998年   11篇
  1997年   15篇
  1996年   6篇
  1995年   7篇
  1994年   3篇
  1992年   5篇
  1991年   8篇
  1990年   9篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1982年   2篇
  1980年   3篇
  1977年   4篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1960年   2篇
  1956年   1篇
  1941年   1篇
  1936年   1篇
  1935年   2篇
  1934年   1篇
  1933年   5篇
  1927年   1篇
排序方式: 共有419条查询结果,搜索用时 281 毫秒
21.
Pink salmon (Oncorhynchus gorbuscha) returning to Prince William Sound (PWS), Alaska, have increased to historically high levels of abundance in recent years, but average body size at return has declined. We examined how body size at return of PWS pink salmon was related to 10 biophysical factors, including the scale of hatchery production. We also examined the effect of body size at return on productivity of wild pink salmon in PWS. For the 1975–1999 brood years, we found that an index of total abundance of pink salmon in the Gulf of Alaska and sea surface temperature during the year of return best explained the variation in pink salmon body size over time. Body size at return was significantly correlated with productivity of wild pink salmon. We used stepwise-regression to fit a generalized linear version of the Ricker spawner-recruit model to determine if body size would explain significant variation in wild-stock productivity in context with other environmental variation, including hatchery production. The results indicate that variability in wild-stock productivity is primarily driven by density-independent factors in the marine environment, but that body size of wild spawners also significantly affects productivity of wild PWS pink salmon. We conclude that the success of large-scale enhancement increasing the total run in PWS may have contributed to the decline in body size because of density-dependent growth in the Gulf of Alaska. We used a simulation model to estimate the impact of hatchery-induced changes in adult body size on wild-stock production in PWS. We estimated an annual wild-stock yield loss of 1.03 million pink salmon, less than 5% of the annual hatchery return of 24.2 million adult pink salmon for brood years 1990–1999.  相似文献   
22.
Dendritic cells and macrophages can process extracellular antigens for presentation by MHC-I molecules. This exogenous pathway may have a crucial role in the activation of CD8+ cytotoxic T lymphocytes during human viral infections. We show here that HIV-1 epitopes derived from incoming virions are presented through the exogenous MHC-I pathway in primary human dendritic cells, and to a lower extent in macrophages, leading to cytotoxic T-lymphocyte activation in the absence of viral protein synthesis. Exogenous antigen presentation required adequate virus-receptor interactions and fusion of viral and cellular membranes. These results provide new insights into how anti-HIV cytotoxic T lymphocytes can be activated and have implications for anti-HIV vaccine design.  相似文献   
23.
24.
We previously documented persistent regulation of erythropoietin (Epo) secretion in mice after a single intramuscular (i.m.) injection of a recombinant adeno-associated virus (rAAV) vector harboring both the tetracycline-dependent transactivator (rtTA) and the Epo cDNA (D. Bohl, A. Salvetti, P. Moullier, and J. M. Heard, Blood 92:1512-1517, 1998). Using the same vector harboring the cynomolgus macaque Epo cDNA instead, the present study evaluated the ability of the tetracycline-regulatable (tetR) system to establish long-term transgene regulation in nonhuman primates. The vector was administered i.m., after which 5-day induction pulses were performed monthly for up to 13 months by using doxycycline (DOX), a tetracycline analog. We show that initial inductions were successful in all individuals and that there was a tight regulation and a rapid deinduction pattern upon DOX withdrawal. For one macaque, regulation of Epo secretion was maintained during the entire experimental period; for the five remaining macaques, secreted Epo became indistinguishable from endogenous Epo upon repeated DOX inductions. We investigated the mechanism involved and showed that, except in the animal in which secretion persisted, delayed humoral and cellular immune responses were directed against the rtTA transactivator protein associated with the reduction of vector DNA in transduced muscles. This study provides some evidence that, when the immune system is not mobilized against the rtTA transactivator, the tetR-regulatable system is able to support long-term transgene regulation in the context of an rAAV in nonhuman primates. In addition, our results suggest potential improvements for vector design.  相似文献   
25.
Atrial natriuretic peptide (ANP) is a cardiac hormone that elicits a profound diuresis, natriuresis, and hypotension. As a preliminary study toward ANP gene therapy of cardiovascular disorders, we have cloned a cDNA for mouse preproANP and carried out expression studies in muscle cells. The expression cassette, which was flanked by ITRs from AAV-2, consisted of HCMV IE enhancer/promoter, preproANP gene, and polyadenylation signal from bovine growth hormone. We transfected this expression vector into primary skeletal myoblasts and examined the following points: (1) secretion of immunoreactive ANP, (2) biological activity, and (3) nature of secreted ANP(s). The conditioned media from cells transfected with ANP vector had significantly higher levels of irANP in comparison to mock control. The secreted irANP had biological activity as confirmed by the elevated level of intracellular cGMP in human umbilical vein endothelial cells. Reverse-phase HPLC analysis showed that the processed form of ANP was the predominant form. These results demonstrate that preproANP gene could be ectopically expressed and correctly processed in skeletal myoblasts, which has implications for development of muscle-based ANP gene therapy.  相似文献   
26.
We have established an Arabidopsis protoplast model system to study plant cell death signaling. The fungal toxin fumonisin B1 (FB1) induces apoptosis-like programmed cell death (PCD) in wild-type protoplasts. FB1, however, only marginally affects the viability of protoplasts isolated from transgenic NahG plants, in which salicylic acid (SA) is metabolically degraded; from pad4-1 mutant plants, in which an SA amplification mechanism is thought to be impaired; or from jar1-1 or etr1-1 mutant plants, which are insensitive to jasmonate (JA) or ethylene (ET), respectively. FB1 susceptibility of wild-type protoplasts decreases in the dark, as does the cellular content of phenylalanine ammonia-lyase, a light-inducible enzyme involved in SA biosynthesis. Interestingly, however, FB1-induced PCD does not require the SA signal transmitter NPR1, given that npr1-1 protoplasts display wild-type FB1 susceptibility. Arabidopsis cpr1-1, cpr6-1, and acd2-2 protoplasts, in which the SA signaling pathway is constitutively activated, exhibit increased susceptibility to FB1. The cpr6-1 and acd2-2 mutants also constitutively express the JA and ET signaling pathways, but only the acd2-2 protoplasts undergo PCD in the absence of FB1. These results demonstrate that FB1 killing of Arabidopsis is light dependent and requires SA-, JA-, and ET-mediated signaling pathways as well as one or more unidentified factors activated by FB1 and the acd2-2 mutation.  相似文献   
27.
Heard KS  Fidyk N  Carruthers A 《Biochemistry》2000,39(11):3005-3014
Human erythrocyte sugar transport presents a functional complexity that is not explained by existing models for carrier-mediated transport. It has been suggested that net sugar uptake is the sum of three serial processes: sugar translocation, sugar interaction with an intracellular binding complex, and the release from this complex into bulk cytosol. The present study was carried out to identify the erythrocyte sugar binding complex, to determine whether sugar binding occurs inside or outside the cell, and to determine whether this binding complex is affected by cytosolic ATP or transporter quaternary structure. Sugar binding assays using cells and membrane protein fractions indicate that sugar binding to erythrocytes is quantitatively accounted for by sugar binding to the hexose transport protein, GluT1. Kinetic analysis of net sugar fluxes indicates that GluT1 sugar binding sites are cytoplasmic. Intracellular ATP increases GluT1 sugar binding capacity from 1 to 2 mol of 3-O-methylglucose/mol GluT1 and inhibits the release of bound sugar into cytosol. Reductant-mediated, tetrameric GluT1 dissociation into dimeric GluT1 is associated with the loss of ATP and 3-O-methylglucose binding. We propose that sugar uptake involves GluT1-mediated, extracellular sugar translocation into an ATP-dependent cage formed by GluT1 cytoplasmic domains. Caged or occluded sugar has three possible fates: (1) transport out of the cell (substrate cycling); (2) interaction with sugar binding sites within the cage, or (3) release into bulk cytosol. We show how this hypothesis can account for the complexity of erythrocyte sugar transport and its regulation by cytoplasmic ATP.  相似文献   
28.
The human immunodeficiency virus type 1 Nef protein alters the post-Golgi stages of major histocompatibility complex class I (MHC-I) biogenesis. Presumed mechanisms involve the disclosure of a cryptic tyrosine-based sorting signal (YSQA) located in the cytoplasmic tail of HLA-A and -B heavy chains. We changed this signal for a prototypic sorting motif (YSQI or YSQL). Modified HLA-A2 molecules, termed A2-endo, displayed constitutively low surface levels and accumulated in a region close to or within the Golgi apparatus, a behavior reminiscent of wild-type HLA-A2 in Nef-expressing cells. However, several lines of evidence indicate that the action of prototypic signals on MHC-I trafficking differs from that of Nef. Internalization of surface A2-endo was more rapid and was associated with efficient recycling to the surface. A transdominant-negative mutant of dynamin-1 inhibited A2-endo constitutive internalization and Nef-induced CD4 down-regulation, whereas it did not affect the activity of Nef on MHC-I. Moreover, trafficking of A2-endo was still affected by the viral protein, indicating additive effects of prototypic signals and Nef. Therefore, distinct trafficking pathways regulate clathrin-dependent and Nef-induced MHC-I modulation.  相似文献   
29.
For insects exploiting spatially structured arrays of resource patches (host plants, fungi, carrion, etc.), the distribution of individuals among patches can have important consequences for the coexistence of competitors. In general, intraspecific aggregation of consumer individuals over the landscape of patches stabilizes competition. Oviposition behavior of individual females can generate aggregation of larvae across patches and, therefore, strongly influences the outcome of competition between co-occurring species. We used simulation models to evaluate the consequences (for the coexistence of competitors) of different movement behaviors by females before and between oviposition events. Coexistence times increase when females are more likely to travel among neighboring patches than among distant ones. Coexistence times are also longer when females begin egg laying near the site of their emergence. Preoviposition dispersal is, therefore, destabilizing. We also considered responses by females to edges of resource arrays. Edge effects are generally stabilizing, delaying competitive exclusion by increasing larval aggregation, but different responses to edges have dramatically different effects on coexistence. The longest coexistence times occur when edges are "sticky", such that females encountering an edge tend to remain there.  相似文献   
30.
The cell''s endomembranes comprise an intricate, highly dynamic and well-organized system. In plants, the proteins that regulate function of the various endomembrane compartments and their cargo remain largely unknown. Our aim was to dissect subcellular trafficking routes by enriching for partially overlapping subpopulations of endosomal proteomes associated with endomembrane markers. We selected RABD2a/ARA5, RABF2b/ARA7, RABF1/ARA6, and RABG3f as markers for combinations of the Golgi, trans-Golgi network (TGN), early endosomes (EE), secretory vesicles, late endosomes (LE), multivesicular bodies (MVB), and the tonoplast. As comparisons we used Golgi transport 1 (GOT1), which localizes to the Golgi, clathrin light chain 2 (CLC2) labeling clathrin-coated vesicles and pits and the vesicle-associated membrane protein 711 (VAMP711) present at the tonoplast. We developed an easy-to-use method by refining published protocols based on affinity purification of fluorescent fusion constructs to these seven subcellular marker proteins in Arabidopsis thaliana seedlings. We present a total of 433 proteins, only five of which were shared among all enrichments, while many proteins were common between endomembrane compartments of the same trafficking route. Approximately half, 251 proteins, were assigned to one enrichment only. Our dataset contains known regulators of endosome functions including small GTPases, SNAREs, and tethering complexes. We identify known cargo proteins such as PIN3, PEN3, CESA, and the recently defined TPLATE complex. The subcellular localization of two GTPase regulators predicted from our enrichments was validated using live-cell imaging. This is the first proteomic dataset to discriminate between such highly overlapping endomembrane compartments in plants and can be used as a general proteomic resource to predict the localization of proteins and identify the components of regulatory complexes and provides a useful tool for the identification of new protein markers of the endomembrane system.Membrane compartmentalization is an essential mechanism for eukaryotic life, by which cells separate and control biological processes. Plant growth, development, and adaptation to biotic and abiotic stress all rely on the highly dynamic endomembrane system, yet we know comparatively little about the proteins regulating these dynamic trafficking events. The plasma membrane (PM) provides the main interface between the cell and its environment, mediating the transfer of material to and from the cell and is a primary site for perception of external signals. Transmembrane proteins are synthesized in the endoplasmic reticulum (ER) and trafficked to the PM via the Golgi, although there are other secretory routes for soluble cargo (discussed in (14)). Post-Golgi trafficking is the main route by which newly synthesized transmembrane proteins and cell wall glycans are delivered to the PM. In plants, secretory and endocytic traffic converge at the trans-Golgi network (TGN), which also functions as an early endosome (EE). Multivesicular bodies (MVBs) are the other main endosomal compartment in plants and serve as prevacuolar compartments (PVCs) or late endosomes (LE) destined for vacuolar degradation (reviewed (1, 5, 6)).Recycling and sorting of plasma membrane proteins is essential for generating the polar localization of auxin efflux transporters (discussed in (7)), formation of the cell plate during cell division (811), and in defense such as localized deposition of papilla reviewed in (12, 13). Furthermore, the subcellular localization of transporters and receptors is dynamically regulated. For example, the boron transporter (BOR1) exhibits polar localization and is internalized and degraded under conditions of high boron to reduce toxicity (14, 15). Similarly the receptor-like kinases (RLKs) flagellin-sensing 2 (FLS2) and brassinosteroid insensitive 1 (BRI1), important transmembrane receptors in antibacterial immunity and plant development, respectively, are constitutively endocytosed and recycled to the PM (1618). Both receptors and transporters are also cargoes of the LE/MVB trafficking route (16) and are probably sorted to the vacuole for degradation (19, 20). Importantly, FLS2 trafficking via the recycling endocytic or the late endocytic route depends on its activation status; inactive receptors are recycled while ligand-activated receptors are sorted to the late endosomal pathway (16). Similarly, the polar sorting of auxin efflux transporters depends on their phosphorylation status (21). These observations illustrate that membrane compartmentalization underpins important aspects of plant cell biology and has initiated a quest toward a better understanding of the endomembrane compartments and the routes and mechanisms by which cargo is trafficked and sorted within the cell.Membrane trafficking within the cell requires complex machinery consisting of a plethora of coat and adaptor proteins, small GTPases, targeting, tethering, and scission factors (reviewed in (22, 23)). Homologues of some animal and yeast and endomembrane regulators have been identified in plants, but the localization and function of many of these remain to be characterized. For example, members of the RAB GTPase family have been shown to have markedly different roles and localizations in plants compared with their animal and yeast homologs (24). Therefore, acquiring localization data for tethering complexes and other regulators in plant systems is essential. In Arabidopsis thaliana, some of these proteins have been developed as useful probes to visualize the different endomembrane compartments by fusion with fluorescent reporters (9, 2527). These include regulators of trafficking events such as RAB GTPases that are molecular switches responsible for the assembly of tethering and docking complexes and compartment identity. RAB proteins are widely used markers of endomembrane compartments, for example RABD2a/ARA5 labels the Golgi and TGN/EE as well as post-Golgi vesicles (4, 24, 26, 28), RABF2b/ARA7 localizes to TGN/EE and LE (25), RABF1/ARA6 is a marker of the LE/MVB vesicles (25, 29), and RABG3f localizes to MVBs and the tonoplast (26, 30).Fluorescent-tagged marker lines for the live-cell imaging of plant cells have been invaluable in defining the location of proteins within and between organelles and endomembrane compartments (26). However, microscopic investigation of membrane trafficking is limited by throughput, as only few proteins can be studied simultaneously. A powerful approach to large-scale identification of proteins in endomembrane compartments is through subcellular fractionation based on physical properties to directly isolate or enrich for the subcellular compartment of interest. Subcellular fractionation-based proteomics have been successfully used to decipher the steady state and cargo proteomes of, including but not limited to, the ER, the vacuole, PM, mitochondria and chloroplasts, and smaller vesicle-like compartments such as peroxisomes and Golgi (3141). However, the smaller, transitory vesicles of the secretory and endocytic pathways have proved challenging to purify for reliable proteomic analysis. To overcome this, affinity purification of vesicles was established in animal cells (42, 43) and recently successfully applied in plants in combination with subcellular fractionation. Affinity purification and mass spectrometry (MS) of syntaxin of plants 61 (SYP61)-positive TGN/EE compartments identified 145 proteins specifically enriched in (44), while affinity isolation of VHA-a1-GFP (vacuolar H+ ATPase A1) identified 105 proteins associated with the TGN/EE (45). The VHA-A1 affinity purification data were then further refined using density gradient centrifugation to differentiate cargo and steady-state proteins (45).We have further explored affinity purification of fluorescent-tagged markers localizing to defined compartments to identify proteins associated with trafficking. Our motivation was to dissect the trafficking routes by enriching for partially overlapping subpopulations of endosomal proteomes associated with small GTPases in the RAB family. We selected RABD2a/ARA5, RABF2b/ARA7, RABF1/ARA6, and RABG3f as markers for Golgi/TGN/EE/secretory vesicles, LE/MVB compartments, LE/MVB compartments and LE/MVB/tonoplast, respectively. Additionally, we used Golgi transport 1 (GOT1), which localizes to the Golgi, clathrin light chain 2 (CLC2) labeling clathrin-coated vesicles (CCVs) and pits and the vesicle-associated membrane protein 711 (VAMP711) present at the tonoplast (26, 27, 29, 46, 47) as comparisons. Our objective was to identify transient cargo proteins, tethers, and docking factors associated with dynamic subdomains of the endomembrane system, to supplement better-characterized “steady-state” components, and to identify components of recycling and vacuolar trafficking pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号